Umbraco Trees v1.0
1Umbraco Trees v1.0

1History

1Version 3 Compatibility

2Conversions

2Object Model

2Overview

2Inheritance Structure

2Class Diagram

3Loading Trees

3The Tree XML Service

3TreeService class

4TreeInit.aspx

4Tree.aspx

4The Tree XML Structure

5Creating Trees

5Overview

6Abstract Methods

6Virtual Methods

7Examples

7Simple Tree Example (loadLanguages)

7Multiple Child Node Levels

8Customized Context Menus

8Overriding the Content Tree

10Version 5 Possibilities

10Overview

10Other Tree Frameworks

11Version 5 Cleanup & Restructure

History

Previous to version 4, all trees were built by implementing the ITree interface and adding the relevant values to the umbracoAppTree database table. Building trees this way required the developer to know exactly how the client side tree component worked and what all of the XML attribute and node names needed to be. Trees built this way were done by simply creating an XML structure manually.

Version 3 Compatibility

All ITree’s will continue to work in version 4 seamlessly, however any new trees that need to be built should use the new structure by inheriting from BaseTree. With the new structure all ITree’s that are not BaseTree’s will be converted at runtime to a LegacyTree. With the refactoring happening in version 5, this new structure should hopefully be able to be utilized with only minor changes.

Conversions

Nearly all of the trees in version 4 have been completely converted to the new structure except for the trees that relied on custom query strings:

· loadPackager

· loadPackages

· loadMembers

(In theory the new tree structure should be able to support these trees but I didn’t want to modify all of the code). The new BaseTree format removes the dependency on the HttpContext and query strings.

Object Model
Overview
BaseTree is abstract class that all trees should inherit from. Other abstract trees have been created to reduce code replication including FileSystemTree and BaseContentTree. The LegacyTree is a wrapper for trees that only implement ITree and do not inherit from BaseTree. A utility tree has been created called NullTree which is used in the event that there is an error loading a tree (i.e. the system cannot find the type specified in the umbracoAppTree table) which renders out a node labeled “Error”.
Inheritance Structure

· ITree

· BaseTree

· FileSystemTree

· loadXslt

· loadPython

· loadScripts

· BaseContentTree

· loadContent

· ContentRecycleBin

· (All other trees)

Class Diagram
(This is a sample and does not include all trees)
[image: image1.png]" umbraco - Microsoft Visual Studio

X

Fle Edt Vew Pojct Bud Team Debug ClssDiagom ook Window Communty Hep
-Gl @ e]9 - E | b Debug ~ Any CPU [# xMode.NodeType B R A Fec N 2=)
pa b8 3 aT a0 | @ Q0% i}
;; Qe . E:]
3 (e ®) “Baserree { Basecontentrvee loadcontent @)
] Inetace Abaract Clis Abract Clis Clas
g 2 + BaseTree & BaseContentTree
1] = Properties 5 Fields = Fikds = Fields
T e e o mser o m_document
[Yt propertes = Properes
= Methods o m_alowedctions 5;(y GogEs
 Render m_app urrentUser g arthlode.
@ Revdrs 2 mdlogtoce & Methods Strtodeld
\ o m_folder BaseContentTres = Methods 3
g m_funcionTocsll 59 Canlseraccesstode 59 Createflowedctions
mid 59 CreateMode 59 CreateRecycktin
o m_initactions % CrestefiodeLink. 3% CreateRoothode
3 m_nttiode 59 GetlkeractionsFortiode 59 CreateRootNodeActions
. o m_sDislog 59 Getlkerallowedactions @ loadContent
LegacyTree ® o4 m_sRecycin 59 OrRendertiode @ Render
Clos o4 m_showContextien 59 RemoveDuplcateMenuDividers
P BaseTres o m trechlas o Ronder)
o mree @ Renderds ContentRecyclsin
= Felts & Properes 39 seticonittute -
o tootiods 2 Alowedctions 59 Settenuatirute
o e Er 59 Setforpublshedsttribute TS
5 Methods F Distode 59 SetProtestedittrbute e e
59 CreateRaotiode & FunctionTaCall 59 SetSourcesattrbutes 2
@ LegacyTres EX) Ziias
@ Render (+ 1 overoad) F 1sDidog @ ContentRecycktin
@ Renders F 1Recyckbin 3% CresteAlowedactons
@ SetRootiode F odekey 59 CreateRaotiode
\ J F Rootods 59 CreateRootodeactions
5 RootodeActions © GetTreelnitisl
(NuliTree F ShonCartexttienu 59 OrRendertiode
Clax 5 startfodeld -
» BaneTres F Treehles .
Methods Filesystemiee Toadysit ®
= Properties = Abract Clis Class
. 4 paselree P BaneTres @ FissyaanTras
O Trechlas 59 Createlbowedctons (+ 1 overload)
5 Methods 99 GreateRootniode (+ 1 overioad) = Properties = Properties
59 CreateRoottiods 59 CreateRootodeActions (+ 1 overload) - " 2 Fiepath
© Rlfiee & Fonimres o]
Fiesearchpattern Flesearctpatter
@ Render © GetDefaultRontiiodenctions o L
@ Renders @ GetTreeDidoglrl (+ 1 overload) Vethods
) & CotTrotioertr 59 CreateRaottiod 59 CreateRaotiod
@ GetTreelnitis! @ FleSystenTree @ loadtsk
4 GetTreeServicel] (+ 1 overload) 59 OrRenderFietiode 59 OrRenderFietiode
59 Titikze 79 Onfendaokitiod @ Renders
© IsBaseTres @ Render
@ Render (+ 1 overload) @ Renders
@ Render 7 2

(o, 550> i 13 wes L i coios)

e

Output| 3 Evor Lt g i Syl Rests

Loading Trees

The model for loading trees has changed in version 4 to reduce database queries, improve performance and remove the dependency that tree’s had on the HttpContext and query strings. The data from the umbracoApp and umbracoAppTree tables is now cached. The system will query the assemblies for all ITree’s and map the objects to the rows in the database using an object called a TreeDefinition. This process only occurs once when the application is started and all TreeDefinition’s are stored in a singleton class called TreeDefinitionCollection. The TreeDefinitionCollection can be used to find ITree’s by various parameters (i.e. Type, Alias, Application, etc…) and the TreeDefinition is used to instantiate a BaseTree which will either return the inherited BaseTree object or create a LegacyTree wrapper for the ITree. The TreeDefinition will initialize the instantiated BaseTree with the values from the database.

The Tree XML Service

TreeService class

The TreeService object is a utility class for dealing with query strings and building URLs for the tree xml service. This class has aided in removing the hard coded values and standardizing the tree service parameters. The standardized parameters for requesting a tree are:

· NodeID

· An integer representing the current node from which to render children

· NodeKey

· A string value acting as the node ID. This is used for tree’s such as the FileSystemTree that relies on filename’s as their node keys.

· TreeType

· The type of tree to render. This is the tree’s alias as specified in the database or by the TreeAlias property of the inherited BaseTree.

· ShowContextMenu

· Boolean value indicating whether or not to show the context menu

· IsDialog

· Boolean value indicating whether or not the tree is in a dialog window (i.e. Content picker)

· App

· The application alias to render. This is only needed for rendering the root nodes of all tree’s in an application.

The TreeService class contains a RequestParameters class for accessing the query string parameters. If direct access to the query string values is required, then this class should be used instead of hard coding string values. In most cases if the BaseTree structure is used, this class will not be needed unless it’s for generating URLs for the tree service.
EXAMPLE:

TreeService treeSvc = new TreeService(…);

return treeSvc.GetServiceUrl();
TreeInit.aspx

The TreeInit.aspx page is used to render the client side XML tree control. This class has been modified in version 4 to utilize the TreeService class and to remove the hard coded values that existed.
Tree.aspx

The Tree.aspx page is used to render out the XML structure that the client side tree control uses to build itself. This class does the finding a loading of the appropriate tree based on the TreeService parameters.

The Tree XML Structure

Prior to version 4 the XML structure for a tree was created manually using XmlDocument, XmlNode and XmlElement objects. This required the developer to have a good understanding of how the underlying client side tree control worked. In version 4, the structure is built by serializing a new object called XmlTree and XmlTreeNode. The developer does not have to worry about the serialization process, only how to create XmlTreeNode’s and adding them to the XmlTree. The Create method of the XmlTreeNode requires a reference to a BaseTree object. This method will create a new XmlTreeNode object and configure its properties based on the BaseTree’s properties. The configurable XmlTreeNode properties are:
· NodeID

· A string representation of the node ID

· Text

· What is visibly displayed for the node

· IconClass

· The CSS class name assigned to the node

· Icon

· The icon file to render for the node

· OpenIcon

· The icon file to render when the node is showing children

· Action

· The JavaScript action for the node to execute when clicked. Generally this is a call the method rendered out from the BaseTree’s RenderJS method

· NotPublished

· Used by the content tree and flagged as true if the node is not published

· IsProtected

· Used by the content tree and flagged as true if the node is protected

· Source

· By default, the XmlTreeNode’s Create method will set this to be an empty string which will tell the client side tree control that this node has no children. If this node has children, then the source for the node can generally be set by using the BaseTree’s GetTreeServiceUrl method.

· NodeType
· By default, the XmlTreeNode’s Create method will set this to be the TreeAlias of the BaseTree. This normally doesn’t need to be changed and is used for creating new documents (see ui.xml documentation…)

· Menu

· By default, the XmlTreeNode’s Create method will set this to be the BaseTree’s AllowedActions list.

EXAMPLE:
//myBaseTree is an instance of a BaseTree and the tree object is the //XmlTree object
XmlTreeNode xNode = XmlTreeNode.Create(myBaseTree);

xNode.NodeID = -1;

xNode.Text = “My Node Text”;

xNode.Icon = “myicon.gif”;

tree.Add(xNode);
Creating Trees

Overview

Creating new trees is very easy. Most of the work is now done in the BaseTree class. Custom functionality can be done by overriding specific methods. Once a new tree is created, the tree definition just needs to be added to the umbracoAppTree table.
Abstract Methods

The BaseTree requires that the following methods are overridden:

· RenderJS(ref StringBuilder)
· This method will render out any custom JavaScript functionality that is required for the tree to work. In most cases, this is the JavaScript that loads the editor page when a user clicks a node.

· Render(ref XmlTree)
· This method creates XmlTreeNodes and adds them to the XmlTree to render.
· CreateRootNode(ref XmlTreeNode)

· This method can update the XmlTreeNode which defines the BaseTree’s root node. By default the XmlTreeNode will be initialized with standard values.

Virtual Methods

There are many methods that can be overridden to customize the BaseTree.

· StartNodeID

· By default this is set to -1.If no node ID is specified in the TreeService then this will be the node ID that will be rendered. This property is also used to create the root node. An example of overriding this property is the ContentRecycleBin tree since it’s start root node id is -40. Another example is the loadContent tree since the start node is different for particular users.

· TreeAlias

· By default this is set to the alias name specified in the umbracoAppTree table. However, in some cases not all trees will be defined in the database and therefore this property should be overridden.

· CreateRootNodeActions(ref List<IAction>)

· By default the list contains: ActionNew, ContextMenuSeperator, ActionRefresh (Create, Refresh)

· This method can be overridden to change the context menu for the root node.

· CreateAllowedActions(ref List<IAction>)
· By default the list contains; ActionDelete (Delete)

· This is the list of actions that are displayed that create the context menu for each node.

· This method can be overridden to change the context menu for all nodes except the root node.

· The Render method can change the IAction list for the Menu property of the XmlTreeNode to anything, however the XmlTreeNode will be initialized with the IAction list created by this method.
Examples

Simple Tree Example (loadLanguages)

Here’s the loadLanguages tree. It is very simple, it overrides the CreateRootNode method to customize the root node (the NodeType and NodeID properties need to be customized since those were the root node values from version 3). The RenderJS method simply renders out the JavaScript that is required to load the editor in the right part of the screen and the Render method just creates XmlTreeNodes for each language and adds them to the XmlTree object.
public class loadLanguages : BaseTree

{

 public loadLanguages(string application) : base(application) {}

 protected override void CreateRootNode(ref XmlTreeNode rootNode)

 {

 rootNode.Icon = FolderIcon;

 rootNode.OpenIcon = FolderIconOpen;

 rootNode.NodeType = "init" + TreeAlias;

 rootNode.NodeID = "init";

 }

public override void RenderJS(ref StringBuilder Javascript)

 {

 Javascript.Append(

 @"

function openLanguage(id) {

parent.right.document.location.href = 'settings/editLanguage.aspx?id=' + id;

}

function openDictionary() {

parent.right.document.location.href = 'settings/DictionaryItemList.aspx';

}");

 }

 public override void Render(ref XmlTree tree)

 {

 foreach (Language l in Language.getAll)

 {

 XmlTreeNode xNode = XmlTreeNode.Create(this);

 xNode.NodeID = l.id.ToString();

 xNode.Text = l.FriendlyName;

 xNode.Action = "javascript:openLanguage(" + l.id +");";

 xNode.Icon = "settingLanguage.gif";

 xNode.OpenIcon = "settingLanguage.gif";

 tree.Add(xNode);

 }

 }

}

Multiple Child Node Levels

Many trees have multiple child node levels such as the content tree. This Render method example shows how to accomplish this (this renders out the dictionary items):

public override void Render(ref XmlTree tree)

{

 Dictionary.DictionaryItem[] tmp;
 //this.id is set when the tree.aspx creates this object. It is the nodeID that is passed in via the tree service parameters (i.e. the query string)

//this checks if the id is the StartNodeID (root node), if it’s not then this will //look up the child nodes for the current dictionary item.
 if (this.id == this.StartNodeID)

 tmp = Dictionary.getTopMostItems;

 else

 tmp = new Dictionary.DictionaryItem(this.id).Children;

 foreach (Dictionary.DictionaryItem di in tmp)

 {

 XmlTreeNode xNode = XmlTreeNode.Create(this);

 xNode.NodeID = di.id.ToString();

 xNode.Text = di.key;

 xNode.Action = string.Format("javascript:openDictionaryItem({0});", di.id);

 xNode.Icon = "settingDataType.gif";

 xNode.OpenIcon = "settingDataType.gif";
 //if there is no children, then set the source to an empty string

//this will ensure that there is no expand button for this node when it is //rendered. Otherwise, set the source to the tree service url by using
//the BaseTree’s GetTreeServiceUrl method
 xNode.Source = di.hasChildren ? this.GetTreeServiceUrl(di.id) : "";

 tree.Add(xNode);

 }

}
Customized Context Menus

Context menu customization is very easy. For simple changes, a developer can override the CreateRootNodeActions and the CreateAllowedActions methods.

//This will create a context menu with the: Create, Delete and Refresh actions with a

//menu seperator. The menu will be rendered in this order.

//The clear() method call is required here because the actions list will already contain

//default values.

//When overriding the Render method, a developer can set any IAction list to the Menu //property of the XmlTreeNode object but the Menu property will be initialized with the //list specified by this method.
//Overriding the CreateRootNodeActions is the same except that will only customize the //context menu for the root node.
protected override void CreateAllowedActions(ref List<IAction> actions)

{

 actions.Clear();

 actions.Add(ActionNew.Instance);

 actions.Add(ActionDelete.Instance);

 actions.Add(ContextMenuSeperator.Instance);

actions.Add(ActionRefresh.Instance);

}
Overriding the Content Tree

It is possible to customize the context menu for any tree. Some requests in the forum have been made to be able to modify the context menu for the content tree which can now be achieved if necessary. It’s not the easiest process but can be done without modifying the core. For the purposes of this example, a custom menu item will be added to the menu (it is also possible to remove items but this should ideally be done by setting permissions).
1. A JavaScript file needs to be created that contains the logic for the context menu item.

//nodeID and nodeType are properties of the umbracoDefault.js script which will be
//accessible from this file.

//These are the properties of the node that has been right clicked to create the context
//menu. These properties will be helpful in doing something useful with the script.
function TestHelp()

{

if (nodeID != '-1' && nodeType != '')

{

alert('Display help for nodeID: ' + nodeID);

return false;

}

}
2. A new IAction needs to be created (context menu items are IAction’s). The IAction can be created in any assembly that is placed in the bin folder.
public class ActionArchive : IAction

{

 //create singleton

 private static readonly ActionArchive instance = new ActionArchive();

 private ActionArchive() { }

 public static ActionArchive Instance

 {

get { return instance; }

 }

 #region IAction Members

 /// <summary>

 /// Each IAction needs to be assigned a letter and they all need to be unique.

 /// </summary>

 public char Letter

 {

get { return '2'; }

 }

 public bool ShowInNotifier

 {

get { return false; }

 }

 /// <summary>

 /// Set this to true if the menu item can be permission assignable. If set to false,

 /// the menu item will show up for all users.

 /// </summary>

 public bool CanBePermissionAssigned

 {

get { return false; }

 }

 public string Icon

 {

get { return "editor/help.gif"; }

 }

 public string Alias

 {

get { return "Help!"; }

 }

 /// <summary>

 /// This is a path to a JavaScript file that contains the custom JavaScript to call.

 /// </summary>

 public string JsSource

 {

get { return "/test.js"; }

 }

 /// <summary>

 /// This is the method to call in the custom JavaScript file. The JavaScript file will
 /// be rendered out in the parent frame

 /// so the call to the method needs to be prefixed with "parent." Since the JavaScript
 /// file is rendered out in the parent frame

 /// the script will have access to the properties of the umbracoDefault.js script

 /// which contains properties such as nodeID (which is

 /// the id of the node that is use has right clicked).

 /// </summary>

 public string JsFunctionName

 {

get { return "parent.ShowHelp()"; }

 }

 #endregion

}
3. A new tree will be created that inherits from the content tree. Override the CreateAllowedActions menu and add the new IAction to the list.
public class CustomContentTree : loadContent

{

 public CustomContentTree(string application) : base(application) { }

 protected override void CreateAllowedActions(
ref List<umbraco.interfaces.IAction> actions)

 {

//ensure the standard content tree actions are created

base.CreateAllowedActions(ref actions);

actions.Add(ActionArchive.Instance);

 }

}
4. Lastly, the umbracoAppTree table needs to be updated to load the new tree instead of the loadContent tree.

Version 5 Possibilities

Overview

The class structure of the trees should probably work for version 5 (depending on how much refactoring is done!). The BaseTree format can be used to generate data for any tree structure and can be easily modified to support JSON as well as XML. A simple provider model could be implemented to achieve this quite easily.

Other Tree Frameworks

The current JS tree framework is very old and isn’t exactly flexible. Newer frameworks use JSON which is much lighter to build the nodes or just use AJAX to render out the child nodes as HTML. Currently the BaseTree structure can support other client side tree’s. An example of this is the new permissions editor which uses the built in ASP.Net TreeView control (checkboxes were needed for each node so the Umbraco tree wouldn’t work). This tree control is a UserControl (umbraco.cms.presentation.Trees.ContentTreeControl) and uses the loadContent tree class as it’s data source. The built in ASP.Net TreeView however is also not very flexible. It works great based on server side scripting but needs to be slightly hacked to allow for client side node refreshes/deletes/etc….
Some cool client side trees that I’ve looked at over the last 6 months are:
· Ext (http://extjs.com/deploy/dev/examples/tree/two-trees.html)

· YUI (http://developer.yahoo.com/yui/examples/treeview/dynamic_tree.html)

· JQuery (http://plugins.jquery.com/project/treeview)

Version 5 Cleanup & Restructure
Based on this new tree structure, the code cleanup/refactoring for version 5 could consist of:

· Updating the ITree

· All Trees would be BaseTree but the ITree could become an interface for BaseTree with the appropriate methods/properties for potential use with Dependency Injection.
· Some methods/properties are there purely for backwards compatibility which should be updated/removed.

· Remove LegacyTree

· Completely overhaul the way that trees are rendered (perhaps remove the need for iFrames). Tree.aspx and TreeInit.aspx to be removed.
· Create JSON & XML providers for BaseTree’s.

· Change the way permissions work (1 letter = 1 permission is not very flexible as there’s only so many characters)

· Overhaul the Context Menu methodology

· Potential to customize the menu based on document type?
· Remove IActions

· Remove the umbracoAppTree & umbracoApp tables
· Properties of Trees and Applications should exist in the code (i.e. Alias)

· The Trees (ITrees) that exist in the Applications (IApplication) and the order they are shown should be defined in XML with a reference to their fully qualified Types.

· IApplication interface should be updated to define the characteristics of an application

· Potential to have applications operate in entirely different manners?

· Create the ability for to render child nodes dynamically. Ruben’s idea:

· “What I would want for the next version, is the ability to right click on “Blog”, and then a submenu “Show by” where you can choose between “date”, “author”, “tag”, … It just changes for the editor view, but the same structure could be accessible from within the website. This would really extend the possibilities.”
